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GRAVITATIONAL SHIELDING AND ABSORPTION* ¥

J. Weber
Department of Physics and Astronomy
University of Maryland
College Park, Maryland

ABSTRACT
2039%Y

The General Theory of Relativity enables us to calculate gravitational
shielding and absorption. These effects are analogous to the shielding of
electroemagretic fields with the exception that in lowest order quadrupoles
rather than dipoles are involved. Quasistatic shielding effects occur in
the tides and for some models the shielding effect is several per cent of
the applied field. The dynamic shielding is much too small to observe at

this time.
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INTRODUCTION

Shielding effeéts have been observed and well understood in electricit&
and magnetism for over a century., The distribution of charges and currents
is calculated iw the presence of a given applied field. If the field of
the driven charges results in a reduction of the magnitude of the original
ériving field, we say there is a shield.ng effect. There is no intrinsic
absorption of the electromagnetic field, gll shielding effects are due to
charges or multipéles which have been influenced by the applied field. The
gravitational case differs in detail, but the same kinds of effects are

clearly present.




QUASISTATIC GRAVITATIONAL SHIELDING

The gravitational éheories of Newton and Einstein enable us to calculate
quasistatic shieliding effects. The second derivatives of the gravitational
field of one body may induce tidal effects in another. The resulting
redistribution of mass gives rise to shielding which is readily observable.
Such effects are known to geophysicists under different names and are

included here for completeness,

We coneider the tidal effects induced in a solid sphere A by another
sphere B, using Newton's Theory of gravitation. In the region outside of

B, the potential of B is given by solutions of the Laplace equation
vzu}3 =0 (1)

A and B will be in orbital motion. We choose for convenience a spherical
coordinate system with the 2z axis along the line of centers and the
center of the coordinate system fixed in the center of mass of A. We

thus have cylindrical symmetry and the solution of (1) is

b
n n

B ey n rn+1

) P (cos®) (2)

For values of r smaller than RAB we must have bn = 0, Thus far
we have calculated the potential of sphere B as though it were at rest
in an inertial frame. In consequence of the orbital motion (free fall).of

A the forces at r = 0 must vanish, This may be accomplished to a good
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approximation by choosing a new potential

1 = , .
U Up + L (3)

The radial force at r = 0 is

au*
2 = a1 'p_(cose) +%§‘ | %)
(4) will vanish at v = 0 if we choose %% = -alPl(cose). This then

leaves the quadrupole term as the major tide producing potential. We may

determine &, by writing, for points on the axis

2
I S
UB B 2:"&nr - RAB;l;r (3)

Expanding the right side of (5) enables us to determine a , so the
quagrupcle term is
2
-Cm P (cez)
. B "2° ’ o
L, = , (e)
2 R 3
AB

The tide producing potential will distort A and to a first

approximation this will result in an induced quadrupole, with a change

of potential

5
-KGm_r ~P, (cos0)
AU = GmB s” 2 (7)
R 3r3
AB

In (7) K 1is a comstant which is called a Love numberl. r, is the



unperturbed radius of sphere A. The form of (7) is chosen because we are

“outside" of the induced dipole and the coefficient of K must reduce to

(&) for r = r The acceleration due to gravity at a fixed radius r near

the surface of A is

5 .
~GmA . 2GmBrP2(cose) ) 3KGmBrS Pz(cose)

g = (8)
r2 RAB3 RAB3r4
_ 3. Ys5. %Y
g8=g, + a1 - oK () )('_ar) (9)

In (9) g, is the acceleration due to gravity of the unperturbed sphere A.

Calculation of K 1is a solved problem in the theory of elasticity. For the

, . 2
m:on considered as a homogeneous elastic sphere K~ .03, Thus at a point

near the surface of the moon the shielding of the field of B due to the

redigiribation of mass of A in conseguence of the tidal forces is about 4% 7.

-

An cobserver on the surface of sphere A would not necessarily cbserve
a decrezse in the part of the acceieration dus to gravity of D, This
foilows because the surface itself moves in response to the tidal force.

This displiacement is denoted by § and given approximately by

+hU%
&6 = (L0)
g(‘)‘
In (10) h 1is a second kind of Love rumber. For R large compared

AB

with RA it is necessary to correct cnly the first term of (8) for the

éisplacement to obtain the acceleration due to gravity at a point on the




surface of A as

) 3., % |
g =g, +(L+h-2(—=D (11)

It is again instructive to consider the moon. Since h has been calculated
a8 ~ .05 it is clear from (il) that an observer in a fixed position on the
lunar surface will see, in general an increase in acceleration due of gravity
of sphere B, but the increase is not as great as it would be if it were

3

not for the shielding term involving -§k° As we noted earlier for a

fixed radius there is a real shielding effect,

DYNAMIC GRAVITATIONAL SHIELDING

A dynamic gravitational field will interact with a mass quadrupole
oscililator, The theory of the absorption of energy has been givenj and
the abgorption cross section calculated. At resonance the absorption

crozs section of such an oscillator is given by

G = .Laﬁl;gg.i (12)
8c

In (12) G 1is the constant of gravitation, I 1is the quadrupole moment,
w is the angular frequency, ¢ 1is the speed of light and 7 1p the
relaxation time. A somewhat more transparent form of (12) is

Sn.

C2 CT
IS

"

c = 60x (124)




(i2A) is seen to be the optical cross section r2, multiplied by the ratio
of gravitational length to the wavelength ), multiplied by the ratio of

the integrating length c¢71 to the wavelength.

If a gravitational wave is incident in a medium containing mass
quadrupoles, a shielding effect may be produced. We proceed to calculate
the gravitational absorption coefficient, Dispersion relations may then
be employed to calculate the refractive index, Suppose we have an incident
plane gravitational wave propagating in the z direction. In a Riemann

normal coordinate system the Riemann tensor is given by

i%}- iwt- vz
Be (13)
The time averaged emergy flux o has a 2z dependence
= Ao 2z
tos Ae (14)

The attenuation constant ¢ is given from (14) as

_ 1 dtOz
@~ "2t dz 5
Oz
dt
o may be calculated if the energy absorption dzz per unit length is

known, For simplicity let us assume that we are dealing with upiaxial

® \hich gives

mass quadrupole oscillators, characterized by a vector r
the equilibrium position vector of one mass element relative to the other.

When driven by the Riemann tensor the dynamical relative displacement



gu of a given mass quadrupole oscillator is given by the solution of the

equation
Zpp 7 [
d 52 +Rde, kK Zpu o (16)
dt m dt m On0

Here D is & dissipation factor, k is the force constant. Our Riemann
normal coordinate system is assumed to be propagated along the world line

of the center of mass of the oscillator. Repeated indices are summed

over, Ru&ﬂy is the Riemann tensor. Taking the Fourier transform of (16)
gives for the Fourier transform Eu(un in terms of the Fourier transform
u
R oao(‘*’)'
mczR"%p(w)r“
thw)= — (17)
(Wm-i wD -k)
The absorbed power is given by
iettmcARE Y
P = Re - 9od (18)
absorbed 2

In (13) Re stands for the real part and the star indicates a complex

conjugate., Making use of (17) we write (18) as

Re - iutme’)? @, pufRA P

p - (19)
absorbed Z(Q?m - 1D~ k)
In terms of the energy flux we write3
" o2 41'\‘2I G’tOZw
(R D)) =3 — (20)

cm



In (20) I 1is the usual quadrupole moment multiplied by a numerical
factor of the order of unity. Writing the square of the Riemann tensor
in terms of the energy flux has the arbitrariness involved in defining the
gravitational energy density and making use of the particular kind of

Riemann tensor associated with a linear mass quadruple oscillator™., (20) may

be regarded as defining I.

Making use of (20), (19) becomes

-iw3m2n'2Gt0rI
= Re (= 3 ) (21)
(Wm-iwD-k)ec

Pabsorbed

The absorption coefficient (15) for a medium containing nj quadrupol es

per unit volume with quadrupole moment Ij will be

2
i, Gn,
o = Re - : L (22)
j . WA
c3(1 - l_ - ___0..1)
Q. 2
J w
wmg k2] k‘;
T = A & = b pey - PR L
in (22) Qj D’ u’Oj o and (22) may be written as
] J
2
i wIiGni
=%
j .22 1
o 1= 2y + g (23)

]

We may obtain the refraction index from the dispersion relation

1+Lim _Z_Er (wDdew' (24)

'
nw) =
o,h-tOTT o w,2 - Ldz

with complex (= W + iuﬁ-




In most cases (23) gives an incredibly small result. For example
suppose we have a case of a medium containing 1022 atoms per cuybic
=43 6

~ ~ 1
centimeter, each with a quadrupole moment ~ 10 g cm?, W~ 10",

~ _ 8 ~ -
Q~10, ¢~ 10 35cm at resonance. For the one cycle in 54 minute

11

quadrupole mode of the earth about one part in 10"~ of the incident

gravitational wave power is absorbed at resonance.

CONCLUSION

We have noted that static and dynamic gravitational shielding effects
exist, in analogy with electrodynamics. For orbiting spheres the quasi-
static tidal shielding effects may amount to several per cent of the
inducing field. The resemblance of {23) to the traditional electromagnetic
theory result is evident, with mass quadrupoles taking the usual role

assumed by electric dipoles.
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